APPENDIX C

SAMPLE PROCEDURE FOR THE DESIGN OF FLOOD CONTROL CHANNEL PROJECTS

- I. Establish Project Objectives
 - A. Flood damage reduction--level of protection desired
 - B. Environmental
 - 1. Water quality
 - 2. Recreation
 - 3. Fish and wildlife
 - 4. Historic preservation
 - 5. Aesthetics
- II. Identify Alternatives for Achieving Project Objectives
 - A. Nonstructural
 - B. Structural
 - 1. Reservoirs
 - 2. Levees
 - 3. Flood control channels
- III. Evaluate Alternatives and Select General Plan
- IV. Detailed Project Design for Flood Control Channels
 - A. Data collection and analysis, existing conditions
 - 1. Watershed conditions
 - a) Climate
 - b) Topography
 - c) Soils/geology
 - d) Sediment yield

- e) Land use/cover (existing and recent changes)
- f) Hydrology
- 2. Stream and floodplain (each reach)
 - a) Hydrology
 - i. Generate flood frequency series
 - ii. Determine corresponding stage data
 - iii. Calculate flow duration curves (hydrographs)
 - b) Hydraulics
 - i. Identify resistance components and determine existing $\underline{\mathbf{n}}$ values at various discharges
 - ii. Determine amount and size distribution of bed load and suspended load
 - c) Geomorphology
 - i. Survey cross section and existing channel grade
 - ii. Establish relationship of cross-section geometry to discharge
 - iii. Measure pool-riffle spacing and meander geometry and relate to discharge and channel width
 - iv. Evaluate stability of bed and banks
 - v. Measure size distribution of bed and bank material
 - vi. Measure cohesiveness of banks
 - vii. Identify and map locations of "hard points" in bed or bank
 - d) Stratigraphy (from test borings, exposed sections)
 - i. Determine stratigraphic sequence
 - ii. Describe stratigraphic units in detail
 - iii. Establish average depth to seasonal water tables
 - e) Existing structures
 - i. Types

- ii. Locations
- iii. Design
- iv. Scour and deposition patterns
- f) Ice
 - i. Recorded thickness
 - ii. Average dates of freeze and breakup
 - iii. Damage
 - iv. Flow patterns and blockages
- g) Ecology
 - i. Map riparian vegetation and locate and identify unique or valuable trees $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($
 - ii. Evaluate terrestrial ecology
 - iii. Evaluate aquatic ecology
- h) Water quality
 - i. Physical
 - ii. Chemical
 - iii. Biological
- i) Aesthetic resources identify, describe, and photograph major components
- j) Historical and recreational resources identify and describe major resources, with particular attention to historical and archeological components
- B. Flood control channel design
 - 1. Fix exact location and alignment geometry of channels
 - 2. Hydraulic design
 - a. Rapid-flow channels use lined channels; choice of environmental features severely limited
 - b. Tranquil flow channels
 - i. Select best combination of channel cross-section alignments and construction techniques to meet flood

- control and environmental objectives (see paragraph 4-1c)
- ii. Select additional features to meet environmental objectives (see Tables 4-1, 4-2, and 4-3)
- iii. Establish downstream water-surface elevation and the water-surface control line, including freeboard
- iv. Select n values for each reach
- v. Size channel
- vi. Check channel stability for anticipated flows (if unstable, stabilize by one or more of the following: adjust cross section; adjust grade, line, or armor channel; provide grade control; provide bank protection)
- 3. Review design for maintenance considerations; adjust design if necessary
- 4. Review design for aesthetics; adjust if needed
- C. Design environmental features of project that are not part of the flood channel proper
- D. Develop detailed cost estimates; if cost too high, modify project design beginning at step IVB